Subtraktion von Größen mit verschiedenen Untereinheiten
Das Wort Subtraktion stammt aus dem lateinischen und bedeutet »abziehen«. Du ziehst also von einer meist größeren Zahl eine oder mehrere kleinere Zahlen ab. Dabei spielt es keine Rolle, ob du gewöhnliche (reelle) Zahlen subtrahierst oder ob es sich um Größen (z. B. Meter oder Kilogramm) handelt. Die Vorgehensweise ist wie bei der gewöhnlichen Subtraktion.
Eine Größe ist ein Ausdruck, bestehend aus einer Zahl und einer Einheit. Die Zahl wird auch als Maßzahl bezeichnet. Hinter der Zahl steht die Einheit. Eine Einheit ist ein fest definierter Wert wie z. B. Länge, Gewicht oder auch Währungen. So ist bei der Größe »2 m« die Zahl 2 die Maßzahl und das m die Einheit (Meter). Größere oder kleinere Werte werden als Vielfaches bzw. Teilung der Einheit angegeben.
Bei der Subtraktion von Größen mit verschiedenen Untereinheiten musst du dich zuerst auf eine gemeinsame Untereinheit festlegen. Entweder gehst du auf die größte oder auf die kleinste Untereinheit, die in deiner Rechnung vorkommt. Wenn du dich für die größte Einheit entscheidest, musst du mit einem Komma rechnen, da die Maßzahlen der kleineren Untereinheiten dann alle ein Komma haben. Wenn du dich für die kleinste Einheit entscheidest, hast du kein Komma, allerdings werden deine Maßzahlen länger, da die kleineren Untereinheiten ein Vielfaches der größeren Untereinheiten darstellen. Sind die Untereinheiten dann gleich, gehst du so vor, wie du es bei der Subtraktion von Zahlen gewöhnt bist: Du subtrahierst alle Maßzahlen. Die gemeinsame Untereinheit wird beibehalten. Die Differenz aus zwei oder mehreren Größen ist wieder eine Größe.
7 m - 30 cm = 7 m - 0,3 m = 6,7 m
7 m - 30 cm = 700 cm - 30 cm = 670 cm
Wir entscheiden uns für die größte in unserer Rechnung vorkommenden Untereinheit (m für Meter). Daher musst du die zweite Größe umrechnen. Der Umrechnungsfaktor bei Längeneinheiten beträgt 10. Da du auf eine größere Untereinheit rechnest (von cm auf m), musst du 2-mal durch 10 dividieren.
So subtrahierst du Größen mit verschiedenen Untereinheiten: | So sieht's aus: |
---|---|
Du sollst diese Aufgabe lösen. | 7m-30cm |
1.
Bei diesen beiden Größen sind die Untereinheiten verschieden. Die erste Größe ist in m (m steht für Meter). Die zweite Größe ist in cm (cm steht für Zentimeter). |
7m-30cm |
2.
Du musst die zweite Größe umrechnen (Umrechnungsfaktor 10). Da du auf eine größere Untereinheit rechnest (von cm auf m), musst du 2-mal durch 10 dividieren: 30 cm : 10 = 3 dm und 3 dm : 10 = 0,3 m. |
1. cm→dm 30cm:10=3dm 2. dm→m 3dm:10=0,3m |
3.
Subtrahiere zuerst die Maßzahlen: 7 - 0,3 = 6,7. |
7m-0,3m =6,7 |
4.
Die gemeinsame Einheit (m) wird beibehalten. |
7m-0,3m =6,7m |
5.
Dein Ergebnis lautet 6,7 m. |
6,7m |
Wir entscheiden uns für die kleinste in unserer Rechnung vorkommenden Untereinheit (cm für Zentimeter). Daher musst du die erste Größe umrechnen. Der Umrechnungsfaktor bei Längeneinheiten beträgt 10. Da du auf eine kleinere Untereinheit rechnest (von m auf cm), musst du 2-mal mit 10 multiplizieren.
So subtrahierst du Größen (verschiedenen Untereinheiten): | So sieht's aus: |
---|---|
Du sollst diese Aufgabe lösen. | 7m-30cm |
1.
Bei diesen beiden Größen sind die Untereinheiten verschieden. Die erste Größe ist in m (m steht für Meter). Die zweite Größe ist in cm (cm steht für Zentimeter). |
7m-30cm |
2.
Du musst die erste Größe umrechnen (Umrechnungsfaktor 10). Da du auf eine kleinere Untereinheit rechnest (von m auf cm), musst du 2-mal mit 10 multiplizieren: 7 m · 10 = 70 dm und 70 dm · 10 = 700 cm. |
1. m→dm 7m·10=70dm 2. dm→cm 70dm·10=700cm |
3.
Subtrahiere zuerst die Maßzahlen: 700 - 30 = 670. |
700cm-30cm =670 |
4.
Die gemeinsame Einheit (cm) wird beibehalten. |
700cm-30cm =670cm |
5.
Dein Ergebnis lautet 670 cm. |
670cm |
Bei der Subtraktion von Größen mit verschiedenen Untereinheiten musst du dich zuerst auf eine gemeinsame Untereinheit festlegen. Subtrahiere anschließend alle Maßzahlen miteinander, die gemeinsame Untereinheit wird beibehalten. Die Differenz aus zwei oder mehreren Größen ist wieder eine Größe.
Das könnte dich auch interessieren
Du hast einen Fehler gefunden oder möchtest uns eine Rückmeldung zu diesem Eintrag geben? Rückmeldung geben